
Naval Research Laboratory
Washington, DC 20375-5320

NRL/MR/5540--07-9093

Documenting Xenon’s Page_Alloc Module

December 10, 2007

Approved for public release; distribution is unlimited.

James Kirby, Jr.
John mcDermott
myong Kang
bruce montrose

Center for High Assurance Computer Systems
Information Technology Division

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

3. DATES COVERED (From - To)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR / MONITOR’S ACRONYM(S)9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR / MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

b. ABSTRACT c. THIS PAGE

18. NUMBER
OF PAGES

17. LIMITATION
OF ABSTRACT

Documenting Xenon’s Page_Alloc Module

James Kirby, Jr., John McDermott, Myong Kang, and Bruce Montrose

Naval Research Laboratory, Code 5540
4555 Overlook Avenue, SW
Washington, DC 20375-5320

NRL/MR/5540--07-9093

Approved for public release; distribution is unlimited.

Unclassified Unclassified Unclassified
UL

James Kirby, Jr.

(202) 767-3107

One of the critical assurance requirements for achieving medium or high assurance is a requirement for significant modularity in design
and implementation. As part of the Xenon effort to create a secure Xen with a medium to high degree of assurance, we have embarked on its
remodularization, a documented decomposition into well-defined pieces with well-defined relationships among them. This remodularization
of Xen is based on the information hiding principle. Associated with an information hiding module may be a provided interface, a set of public
programs (e.g., functions, subroutines, macros) that programs outside the module can use to accomplish their work. Documentation of a module’s
provided interface serves as a contract between the module’s users and its developers. This report documents the decomposition of the Xen
page_alloc module and the specification of the provided interface of each of its submodules.

10-12-2007 Memorandum Report

37

Jan. 2007 – Oct. 2007

6475

Secure software engineering
Software modularity

Information hiding design
Software interface specification

Xen hypervisor

CONTENTS

iii

Introduction...1

1. Environmental.Model.of.Hardware.Memory..4
2. Page.Allocator.(was.Allocation.Bitmap)...6

. 2.1. init_boot_allocator...6

. 2.2. allocated_in_map...7

. 2.3. map_alloc..8

. 2.4. map_free..9

3. Boot-Time.Allocator..10

. 3.1. init_boot_pages...10

. 3.2. alloc_boot_pages_at..11

. 3.3. alloc_boot_pages...12

. 3.4. end_boot_allocator..13

4. Run-Time.Allocator.(was.Binary.Buddy.Allocator)..14

. 4.1. init_heap_pages...14

. 4.2. free_heap_pages..15

. 4.3. alloc_heap_pages...16

. 4.4. avail_heap_pages...17

. 4.5. scrub_heap_pages..18

. 4.6. dump_heap..19

5. Xen.Heap.Allocator.(was.Xen-Heap.Sub-Allocator)..20

. 5.1. init_xenheap_pages...20

. 5.2. alloc_xenheap_pages...21

. 5.3. free_xenheap_pages..22

6. Dom.Heap.Allocator.(was.Domain-Heap.Sub-Allocator)...23

. 6.1. init_domheap_pages..23

. 6.2. assign_pages..24

. 6.3. _._alloc_domheap_pages...25

. 6.4. alloc_domheap_pages..28

. 6.5. avail_domheap_pages..31

. 6.6. free_domheap_pages...32

7. Page.Scrubbing..33

. 7.1. page_scrub_softirq..33

. 7.2. avail_scrub_pages..34

Documenting Xenon’s Page Alloc Module∗

J. Kirby, J. McDermott, M. Kang, and B. Montrose
Naval Research Laboratory

December 7, 2007

Abstract

One of the critical assurance requirements for achieving medium or high assurance is a re-
quirement for significant modularity in design and implementation. As part of the Xenon effort to
create a secure Xen with a medium to high degree of assurance, we have embarked on its remod-
ularization, a documented decomposition into well-defined pieces with well-defined relationships
among them. This remodularization of Xen is based on the information hiding principle. Asso-
ciated with an information hiding module may be a provided interface, a set of public programs
(e.g., functions, subroutines, macros) that programs outside the module can use to accomplish
their work. Documentation of a modules provided interface serves as a contract between the
modules users and its developers. This report documents the decomposition of the Xen page alloc
module and the specification of the provided interface of each of its submodules.

Introduction
As part of the Xenon effort to create a secure Xen with a medium to high degree of assur-

ance, we have embarked on its remodularization—a documented decomposition into well-defined
pieces with well-defined relationships among them. When the modularization is complete, its
documentation will support certification reviews and will help developers and maintainers iden-
tify parts of the Xen they must understand to accomplish some task without looking at irrelevant
parts.

One of the critical assurance requirements for achieving medium (EAL 5) or high (EAL
6/7) assurance is a requirement for significant modularity in design and implementation. This
increased modularity serves multiple purposes. First, increased modularity makes any security
analysis more believable. Second, it reduces the scope of a flaw (or malware in some cases); that
is modularity reduces dependencies between parts of the software, so flaws remaining in the code
are less likely to be exploitable. Finally, modularity can be used to separate code into security-
relevant and security-irrelevant modules. This reduces the amount of code that needs to be built
according to high assurance rules.

This remodularization of Xen is based on the information hiding principle, which Dave Parnas
described in his well-known paper, On the Criteria to Be Used in Decomposing Systems into
Modules [CACM 1972]. A later paper, The Modular Structure of Complex Systems [Parnas,
Clements, and Weiss, IEEE TSE, March 1985], which reported results of an NRL project to
redevelop the operational flight program (OFP) for the Navy’s A-7E attack aircraft, describes
techniques that aid in applying the principle to a real system.

∗This software is a Research Work of the United States Naval Research Laboratory, derived from GPL software. Any
distribution of a source code or binary form of this software is prohibited. Release of this software outside the Department
of Defense may be a violation of U.S. Law. The derived portion of this software is United States Government Work not
protected by U.S. Copyright.

1

__
 Manuscript approved October 29, 2007.

An information hiding module is a design construct. Each module has a secret, one or more
decisions (which might also be thought of as assumptions) that developers judge likely to change
or that they judge it is useful not to distribute throughout the system. Associated with a module
may be a set of a public programs (e.g., functions, subroutines, macros) that programs outside the
module can use to accomplish their work. These public programs constitute a public or provided
interface representing decisions and assumptions upon which using programs may depend. When
the module is carefully designed, the decisions it hides can be changed without invalidating the
decisions and assumptions that the provided interface represents and upon which using programs
depend.

A module’s secret is decomposed by its children. For example, a module that hides character-
istics of peripheral devices that are likely to change might be decomposed into a set of modules,
each of which hides characteristics of a particular class of device that are likely to change. This
module structure or information hiding structure for a system is a tree of modules. It is useful to
think of each module in the hierarchy as a work assignment for one or more developers or main-
tainers. The most difficult (and important) parts of designing the module structure are identifying
the module secrets and clearly and concisely describing them. As a tree, the module structure
can be usefully presented in a variety of ways, including as an indented list and as a UML class
diagram.

Documentation of a module’s provided interface serves as a contract between the module’s
users and its developers. To be useful, this documentation should be written so that it does not
reveal or assume decisions designers intend the module to hide. Some implications of this are
that documentation of the behavior of functions on the provided interface should not be written
in terms of such implementation details as their algorithms, internal data structures, nor which
functions they may call.

To facilitate describing the behavior of functions on modules’ provided interfaces, we de-
velop an environmental model which provides an application-specific ontology for the system
[Kirby, COMPSAC 2006]. The model records the system boundary by identifying objects in the
environment of the system (which may include the system itself and components of the system)
and attributes of the objects that may be relevant to the system, referred to as environmental at-
tributes. The declaration of an attribute in the model includes its type, which characterizes the
values it can assume, and a description of how to interpret its value. Identifying appropriate and
relevant attributes—those that describe what the software can sense, control, and affect—is key.
Descriptions of software behavior can be written in terms of these attributes.

UML classes represent objects in the system environment. Standard UML class notation
may record relationships among the classes of the environmental model, the relative cardinality
of the objects abstracted by the classes of the environmental model, and the cardinality of the
attributes of each object. The attributes associated with each object are listed in the corresponding
class. Attributes whose values the software can sense (either directly or via physical or cyber
sensors) are referred to as monitored attributes. Attributes whose values the software can set or
affect (either directly or via physical or cyber actuators) are referred to as controlled attributes.
Monitored attributes and controlled attributes can be distinguished by assigning the former to
a class compartment labeled monitored, and assigning the latter to a class compartment labeled
controlled (see Fig. 1). Assigning an attribute to an unnamed compartment indicates that the
engineer has not decided whether the attribute is monitored or controlled.

Fig. 1. illustrates an environmental model of hardware memory which consists of a number of
hardware pages. The monitored attribute mMaxPage gives the number of pages in memory. The
monitored attribute mPageSize gives the size of a page in bytes (in this model all pages have the
same size). The figure illustrates attributes of a HardwarePage, e.g., monitored attribute mBad,
controlled attributes cAllocated, cZeroized. Xen can sense the values of monitored attributes and
set the values of controlled attributes. The tabular declarations of attributes in Tables 1 through 3
include a description of how to interpret attribute values.

Section 2.3 illustrates the specification of the function map alloc(), which allocates hard-

2

ware pages. As indicated by the table, the function has two parameters. Both parameters are in-
puts to the function (indicated by the I in the Mode column) and are of type unsigned long.
The first parameter (p1) gives the linear address of a hardware page. The second parameter
specifies a number of hardware pages. Below the table, Undesired Events identifies undesired
events—requesting pages that map alloc() has already allocated and requesting pages before
initializing the module Page Allocator—which, encountered at run-time, prevent correct opera-
tion of the function. Effects describes the effect of calling map alloc(), which is to set to true
the cAllocated attribute of all hardware pages with linear addresses in the range

[p1, p1 + p2− 1]

Section 2.2 illustrates the specification of the function allocated in map, which callers
can use to determine whether a particular hardware page is allocated. In the parameter table,
labeling the first parameter p0, rather than p1, indicates that it specifies the value returned by
the function, which the term tAllocated specifies. The O in the Mode column indicates that the
parameter is output from the function to its caller (as would be expected of the function’s return
value). The definition of tAllocated in the Dictionary specifies that the value returned by the
function (p0) is the value of the cAllocated attribute of the hardware page whose linear address is
given by p1.

Some tables in the Effects and Dictionary subsections of Sections 6.2, 6.3, and 6.4 are more
complicated than those discussed above. For example, the first table in Effects of Section 6.2
specifies the values on return to the caller of the variables indicated in the leftmost cell below the
double line (e.g., p.cPageOwner, p,cDomAllocated, p.cRefCount). The prime appended to the
variable name indicates the value of the variables on return. The values of unprimed variables
are those established on the call to the function. The cells in the last rows (below the double line)
to the right of the double line specify alternative value(s) for the variable(s). The leftmost cells
above the double line partition the state space of the function. Exactly one of them is true, which
selects the corresponding row of rules for determining the value of the variable(s). These rules
are written so that they also partition the state space—exactly one of them is true. If p1.mDying
is true—i.e., the domain referred to by the first parameter is dying—then the first row determines
which of the alternative set of values in the last row apply. The true in the first column to the right
of the double line—which can be thought of as specifying always—indicates that the values in
the last row to the immediate right of the double line apply. The false in the rightmost column,
which can be thought of as never, indicates that the values in the rightmost column of the last
row do not apply when p1.mDying is true. When p1.mDying is false, the more complex
expressions to the right of the double line in the second row determine which set of values in the
bottom row apply. Note that the table is quantified by the expression above the table.

The first table in Effects in Section 6.3 which has only the vertical line is interpreted differ-
ently. The cells to the left of the double line represent alternative conditions. If one of them is
true, then the corresponding expression to the right of the double line describes effects of calling
the program. If none of the alternative conditions to the right of the double line is true, then the
table does not describe any effects of the calling the program.

3

Module page alloc
Secret. The page alloc module’s secret is how memory is allocated in Xenon. This includes

how Xen keeps track of which pages of memory have been allocated and which have not.

1 Environmental Model of Hardware Memory
Fig. 1 provides a graphical view of Xenon’s environmental model of the memory hardware
on which it runs. This is a software view of the memory hardware. While the hardware has
its own particular addressing scheme based on address lines, this Xenon model uses the linear
address scheme. Hardware memory comprises a set of hardware pages. The figure illustrates two
attributes of hardware memory, mPageSize and mMaxPage. Being in the monitored compartment
of the Hardware Memory class indicates that Xenon is able to determine the values of the two
attributes, but is unable to change those values.

Figure 1: Environmental Model of Hardware Memory

The Hardware Page class in Fig. 1 indicates that hardware pages have attributes whose val-
ues Xenon can sense but not change and that it has attributes whose values Xenon can change
(attributes in the controlled compartment of the Hardware Page class).

Table 1 declares the attributes of hardware memory which the environmental model in Fig.
1 introduced. From Table 1 we see that mMaxPage denotes the number of pages in hardware
memory and that mPageSize denotes the size of hardware pages in bytes. Table 3 declares the
attributes of hardware pages which the environmental model introduced.

4

Table 1: Hardware Memory Attribute Declarations

Attribute Type Class Interpretation
mMaxPage integer monitored Denotes the number of pages in hardware memory.
mPageSize integer monitored Denotes the number of bytes in a hardware page.

Table 2: Hardware Page Attribute Declarations

Attribute Type Class Interpretation
mAddress integer monitored Denotes the linear address of the hardware page.
cAllocated boolean controlled cAllocated = true iff Xen has allocated the hardware page.
mBad boolean monitored mBad = true iff the hardware page is not to be used.
cZeroized boolean controlled cZeroized = true iff the hardware page is zeroized.
cZone yZoneType controlled Denotes zone to which Xen has assigned the hardware page.
cPageOwner yDomain controlled Denotes a domain to which Xen has assigned the hardware page.
cRefCount int controlled Count of references to the page.
cDomAllocated boolean controlled Indicates whether Xen has assigned the hardware page to a domain.
cScrubMe boolean controlled Indicates a page that Xen needs to zeroize.

Dictionary
yDomain is a handle for a Xen domain.
yZoneType denotes memory zones. Enumerated values are: xen, dom, dma, any (Xen makes

limited and inconsistent use of the latter).
mfn2Page(), page2Mfn() are functions on addresses.

mfn2Page(linear address) → virtual address

page2Mfn(virtual address) → linear address

(∀p ∈ HardwareMemory)(∃ virtual address v)(v = mfn2Page(p) ⇒ p = page2Mfn(v))

(∀ virtual address v)(∃p ∈ HardwareMemory)(p = page2Mfn(v) ⇒ v = mfn2Page(p))

Fig. 2 graphically illustrates the module structure of the Page Alloc module. The remainder
of this document describes each of the submodules in turn, describing its secret and specifying
the programs on its provided interface.

Table 3: Domain Attribute Declarations

Attribute Type Class Interpretation
mDying boolean monitored Indicates whether the domain is dying.
mMaxPages unsigned int monitored Indicates the maximum number of pages that Xen assigns to a domain.
cTotPages unsigned int controlled Indicates the number of pages that Xen has assigned to a domain.
cDomainID domid t controlled Indicates the identifier of a domain.

5

Figure 2: Page Alloc Module Structure

2 Page Allocator (was Allocation Bitmap)
Secret. This module hides how to keep track of which hardware pages of memory have and have
not been allocated.

2.1 init boot allocator
Initialize boot-time memory allocation mechanism.

Parameter # Mode Type Interpretation
p0 O paddr t Starting memory location of available hardware memory to manage.
p1 I paddr t Starting memory location of hardware memory to manage.

Undesired Events

• uAllocationAlreadyInitialized. Hardware memory allocation already initialized.

• uAllocationNotInitialized. Hardware memory allocation not initialized.

Effects

(∀p ∈ HardwareMemory)(p.mAddress in [p1, mMaxPage− 1] ⇒ p.cAllocated′ = true)

• enables uAllocationAlreadyInitialized

• disables uAllocationNotInitialized

Issues

• Don’t think behavior is quite right. Don’t think the pages containing the bit map, which is
at the beginning of the memory pointed to by p1, is allocated.

6

2.2 allocated in map
Hardware page already allocated?

Parameter # Mode Type Interpretation
p0 O boolean tAllocated
p1 I unsigned long Linear address of a hardware page.

Undesired Events

• uAllocationNotInitialized

• uNotLegalAddress

Effects
None.

Dictionary
tAllocated boolean

(∃p ∈ HardwareMemory)(p.mAddress = p1 ⇒ tAllocated′ = p.cAllocated)

Issues

• Does not report undesired events encountered.

7

2.3 map alloc
Allocate hardware pages.

Parameter # Mode Type Interpretation
p1 I unsigned long Linear address of a hardware page.
p2 I unsigned long Count of hardware pages.

Undesired Events

• uHardwarePagesAlreadyAllocated. The requested hardware pages are already allocated.

• uAllocationNotInitialized

Effects

(∀p ∈ HardwareMemory)(p.mAddress in [p1, p1 + p2− 1] ⇒ p.cAllocated′ = true)

• Enables the undesired event uHardwarePagesAlreadyAllocated for p2 hardware pages
starting at page number p1.

• Disables the undesired event uHardwarePagesNotAllocated for p2 hardware pages start-
ing at page number p1.

Issues

• Does not report undersired events encountered.

8

2.4 map free
Return allocated hardware pages to free store.

Parameter # Mode Type Interpretation
p1 I unsigned long Hardware page number.
p2 I unsigned long Count of hardware pages.

Undesired Events

• uHardwarePagesNotAllocated. Returned hardware pages were not allocated.

• uAllocationNotInitialized

Effects

((∀p ∈ HardwareMemory)(p.mAddress in [p1, p1 + p2− 1] ⇒ p.cAllocated′ = false)

• Disables the undesired event uHardwarePagesAlreadyAllocated for p2 hardware pages
starting at page number p1.

• Enables the undesired event uHardwarePagesNotAllocated for p2 hardware pages start-
ing at page number p1.

Issues

• Does not report undesired events encountered.

9

3 Boot-Time Allocator
The Boot-Time Allocator module hides how the initial allocation of memory is performed.

3.1 init boot pages
Initial allocation of pages.

Parameter # Mode Type Interpretation
p1 I paddr t Linear address of a hardware page.
p2 I paddr t Linear address of a hardware page.

Effects

(∀p ∈ HardwareMemory)(p.mAddress in [p1, p2] ∧ p.mBad = true ⇒
p.cAllocated′ = true)

Issues

• Why are there both init boot pages and init boot allocator? Why not combine?

• What if
p1 ≥ p2?

10

3.2 alloc boot pages at
Allocate specified number of free pages starting at specified linear address.

Parameter # Mode Type Interpretation
p0 O unsigned long tFirstAllocatedPage
p1 I unsigned long Number of hardware pages.
p2 I unsigned long Linear address of a hardware page.

Effects

(∀p ∈ HardwareMemory)(p.mAddress in [p2, p1 + p2− 1] ⇒ p.cAllocated = false) ⇒
(∀p ∈ HardwareMemory)(p.mAddress in [p2, p1 + p2− 1] ⇒ p.cAllocated′ = true)

Dictionary
tFirstAllocatedPage unsigned long

(∀p ∈ HardwareMemory)(p.mAddress in [p2, p1 + p2− 1] ⇒ p.cAllocated = false) ⇒
tF irstAllocatedPage′ = p2

(∃p ∈ HardwareMemory)(p.mAddress in [p2, p1 + p2− 1] ∧HardwarePage[i].cAllocated = true) ⇒
tF irstAllocatedPage′ = 0

11

3.3 alloc boot pages
Allocate specified number of free pages.

Parameter # Mode Type Interpretation
p0 O unsigned long tFirstAllocatedPage
p1 I unsigned long Number of hardware pages.
p2 I unsigned long Hardware page alignment.

Effects

(∃p ∈ HardwareMemory)(∀p̂ ∈ HardwareMemory)(

(p̂.mAddress in [p.mAddress, p.mAddress− 1] ∧ p̂.cAllocated = false) ⇒
p̂.cAllocated′ = true)

Dictionary
tFirstAllocatedPage unsigned long

(∃p ∈ HardwareMemory)(∀p̂ ∈ HardwareMemory)(

(p̂.mAddress in [p.mAddress, p.mAddress− 1] ∧ p̂.cAllocated = false) ⇒
tF irstAllocatedPage′ = p.mAddress)

(@p ∈ HardwareMemory)(∀p̂ ∈ HardwareMemory)(

(p̂.mAddress in [p.mAddress, p.mAddress− 1] ∧ p̂.cAllocated = false) ⇒
tF irstAllocatedPage′ = 0)

Issues

• Not handling hardware page alignment (parameter p2) correctly. Yet.

• Assume there are mMaxPage locations, so memory runs from 0 to mMaxPage - 1. Why?

• This effects section needs more thought. The calculation of j doesn’t look right.

12

3.4 end boot allocator
Assign remaining free pages to domain.

Effects

(∀p ∈ HardwareMemory)(p.mAddress in [0, mMaxDmaPfn] ∧ p.cAllocated = false ⇒
p.cAllocated′ = true ∧ p.cZone′ = dma)

(∀p ∈ HardwareMemory)(p.mAddress in [mMaxDmaPfn + 1, mMaxPage− 1] ∧ p.cAllocated = false ⇒
p.cAllocated′ = true ∧ p.cZone′ = dom)

Issues

• Looks like we need to distinguish before and after state (as with the primes, above).

13

4 Run-Time Allocator (was Binary Buddy Allocator)
Secret. Xen partitions memory into a number of zones. The Run-Time Allocator module man-
ages the allocation of blocks of pages of memory from, and the deallocation of blocks of pages of
memory to these zones. This module hides the algorithms and data structures used to implement
the allocation and deallocation of memory.

4.1 init heap pages
Initialize heap pages.

Parameter # Mode Type Interpretation
p1 I unsigned int Zone.
p2 I struct page info * Page.
p3 I unsigned long Number of pages.

Effects

(∀p ∈ HardwareMemory)(p.mAddress in [page2Mfn(p2), page2Mfn(p2) + p3− 1] ⇒
p.cAllocated′ = false ∧ p.cZone′ = p1)

14

4.2 free heap pages
Put block of pages in free space for specified zone.

Parameter # Mode Type Interpretation
p1 I unsigned int Zone.
p2 I struct page info * Page.
p3 I unsigned int Order of pages.

Undesired Events

• uRequestTooLarge

• uBadZone

Effects

(∀p ∈ HardwareMemory)(p.mAddress in [page2Mfn(p2), page2Mfn(p2) + 2p3 − 1] ⇒
p.cAllocated′ = false) ∧ p.cZone′ = p1)

Issues

• Function does not detect either UE.

• When can the zone a block belongs to change?

• I assume that the user of this function is not concerned with the merging of blocks of mem-
ory into larger blocks, nor with the algorithms and data structures involved in managing
and implementing such merging.
Of course, the implementor is.

15

4.3 alloc heap pages
Allocate block of pages from specified zone.

Parameter # Mode Type Interpretation
p0 O struct page info * tAllocatedPageBlock
p1 I unsigned int Zone.
p2 I unsigned int Order of pages.

Undesired Events

• uRequestTooLarge

• uNoSuitableBlocks

Effects

(∃p ∈ HardwareMemory)(∀p̂ ∈ HardwareMemory)(

(p̂.mAddress in [p.mAddress, p.mAddress + 2p2 − 1] ∧ p̂.cAllocated = false ∧ p̂.cZone = p1) ⇒
p̂.cAllocated′ = true)

Dictionary
tAllocatedPageBlock struct page info *

(∃p ∈ HardwareMemory)(∀p̂ ∈ HardwareMemory)(

(p̂.mAddress in [p.mAddress, p.mAddress + 2p2 − 1] ∧ p̂.cAllocated = false ∧ p̂.cZone = p1) ⇒
tAllocatedPageBlock′ = mfn2Page(p.mAddress))

(@p ∈ HardwareMemory)(∀p̂ ∈ HardwareMemory)(

(p̂.mAddress in [p.mAddress, p.mAddress + 2p2 − 1] ∧ p̂.cAllocated = false ∧ p̂.cZone = p1) ⇒
tAllocatedPageBlock′ = null)

p2 > mMaxOrder ⇒ tAllocatedPageBlock′ = null

Issues

• The function detects both UEs, but reports either by returning null.

16

4.4 avail heap pages
How many unused pages?

Parameter # Mode Type Interpretation
p0 O unsigned long tNumAvailPages
p1 I int Identify one zone or all zones.

Undesired Events

• uBadZone

• uNotInitialized

Effects
None.

Dictionary
tNumAvailPages unsigned long

tNumAvailPages′ = |{(∀p ∈ HardwareMemory)(p.cAllocated = false ∧ (p1 = p.cZone ∨ p1 = −1))}|

Issues

• Elsewhere, zones is declared an unsigned int. Here, zones is declared an integer, presum-
ably to allow -1 to be used to indicate all zones.

• UEs neither detected nor reported.

17

4.5 scrub heap pages
Scrub unallocated pages from all heap zones.

Undesired Events

•

Effects

(∀p ∈ HardwareMemory)(p.cAllocated = false ⇒ p.cZeroized′ = true)

Issues

• There may be details of visible behavior this does not yet address, e.g., progress dots,
process pending timers.

18

4.6 dump heap
Print allocation information on heap zones.

Undesired Events

•

Effects
None.

Issues

• Not capturing printouts.

• Printing is not captured in environmental model.

19

5 Xen Heap Allocator (was Xen-Heap Sub-Allocator)
Secret. The Xen Heap Allocator module manages the allocation of blocks of pages of memory
from, and the deallocation of blocks of pages of memory to the xen heap zone. This module hides
the algorithms and data structures used to implement the allocation and deallocation of memory.

5.1 init xenheap pages
Initialize xen heap pages.

Parameter # Mode Type Interpretation
p1 I paddr t Address of first page of xen heap.
p2 I paddr t Address of last page of xen heap.

Undesired Events

• Detects but does not report p2 ≤ p1.

Effects

(∀p ∈ HardwareMemory)(p.mAddress in [page2Mfn(p1), page2Mfn(p2)− 1] ⇒
(p.cAllocated′ = false ∧ p.cZone′ = xen))

Issues

• This doesn’t yet deal with ”rounding” addresses up and down, nor with leaving one page
buffer between xen and dom zones.

• Whose responsibility is it to know the location of the xen heap?

20

5.2 alloc xenheap pages
Allocate block of pages from the xen heap zone.

Parameter # Mode Type Interpretation
p0 O void * tAllocatedPageBlock
p1 I unsigned int Order of pages.

Undesired Events

• uRequestTooLarge

• uNoSuitableBlocks

Effects

(∃p ∈ HardwareMemory)(∀p̂ ∈ HardwareMemory)(

(p̂.mAddress in [p.mAddress, p.mAddress + 2p1 − 1] ∧
p̂.cAllocated = false ∧ p̂.cZone = xen) ⇒

p̂.cAllocated′ = true)

Dictionary

(∃p ∈ HardwareMemory)(∀p̂ ∈ HardwareMemory)(

(p̂.mAddress in [p.mAddress, p.mAddress + 2p1 − 1] ∧
p̂.cAllocated = false ∧ p̂.cZone = xen) ⇒

tAllocatedPageBlock′ = mfn2Page(p.mAddress))

(@p ∈ HardwareMemory)(∀p̂ ∈ HardwareMemory)(

(p̂.mAddress in [p.mAddress, p.mAddress + 2p1 − 1] ∧
p̂.cAllocated = false ∧ p̂.cZone = xen) ⇒

tAllocatedPageBlock′ = null)

p1 > mMaxOrder ⇒ tAllocatedPageBlock′ = null

Issues

• The function detects both UEs, but reports either by returning null.

21

5.3 free xenheap pages
Put block of pages in free space for xen heap zone.

Parameter # Mode Type Interpretation
p1 I void * Virtual address of block of pages.
p2 I unsigned int Order of pages.

Undesired Events

• uRequestTooLarge

• uNoAddress

Effects

p1 6= null ⇒
(∀p ∈ HardwareMemory)((p.mAddress in [page2Mfn(p1), page2Mfn(p1) + 2p2 − 1]) ⇒

p.cAllocated′ = false) ∧HardwarePage[i].cZone = xen)

Issues

• I assume that I don’t need to set all the p.cZone’ = xen, since they should be already set.

• Function does not detect nor report UE.

• Can the zone a block belongs to change? So the zone should have been and should remain
xen, eh?

• I assume that the user of this function is not concerned with the merging of blocks of mem-
ory into larger blocks, nor with the algorithms and data structures involved in managing
and implementing such merging.
Of course, the implementor is.

22

6 Dom Heap Allocator (was Domain-Heap Sub-Allocator)
Secret. The Dom Heap Allocator module manages the allocation of blocks of pages of memory
from, and the deallocation of blocks of pages of memory to the domain heap zone. This module
hides the algorithms and data structures used to implement the allocation and deallocation of
memory.

6.1 init domheap pages
Initialize domain heap.

Parameter # Mode Type Interpretation
p1 I paddr t Linear address of page.
p2 I paddr t Linear address of page.

Undesired Events

• Detects but does not report p2 ≤ p1.

Effects

sdma < edma ⇒ (∀i in [sdma, edma])(HardwarePage[i].cAllocated = false ∧
HardwarePage[i].cZone = dma)

sdma < edma ⇒ (∀i in [sdom, edom])(HardwarePage[i].cAllocated = false ∧
HardwarePage[i].cZone = dom)

Dictionary
sdma = min(p1, mMaxDmaPfn)
edma = min(p2, mMaxDmaPfn)
sdom = max(p1, mMaxDmaPfn)
edom = max(p2, mMaxDmaPfn)

Issues

• Both init domheap pages and end boot allocator (in distinct modules) know that the dma
zone goes below mMaxDmaPfn and dom zone goes above it.
Why can’t this knowledge be restricted to one module?

• This doesn’t yet deal with ”rounding” addresses up and down, nor with leaving one page
buffer between xen and dom zones.

• Which module has the responsibility to know the location of the xen heap?

23

6.2 assign pages
Assign pages to domain.

Parameter # Mode Type Interpretation
p0 O int tReturnValue
p1 IO struct domain * Guest domain.
p2 IO struct page info [] Pages of virtual memory.
p3 I int Order
p4 I int Memory flags.

Effects

(∀i in [0, 2p3 − 1])(∃p ∈ HardwarePage)((p = page2Mfn(p2[i]) ⇒26666664

p1.mDying true false

¬p1.mDying p1.mTotPages + 2p3 > p1.mMaxPages p1.mTotPages + 2p3 ≤ p1.mMaxPages
∧ MEMF no refcount /∈ p4 ∨ MEMF no refcount ∈ p4

p.cPageOwner′ = p.cPageOwner p1
p.cDomAllocated′ = p.cDomAllocated true

p.cRefCount′ = p.cRefCount 1

37777775
)

2664
p1.mDying true false

¬p1.mDying p1.mTotPages + 2p3 > p1.mMaxPages p1.mTotPages + 2p3 ≤ p1.mMaxPages
∨ MEMF no refcount ∈ p4 ∧ MEMF no refcount /∈ p4

p1.cTotPages′ = p1.cTotPages p1.cTotPages + 2p3

3775
Dictionary

tReturnValue˛̨̨̨
˛̨̨̨ p1.mDying true false

¬p1.mDying p1.mTotPages + 2p3 > p1.mMaxPages p1.mTotPages + 2p3 ≤ p1.mMaxPages
∧ MEMF no refcount /∈ p4 ∨ MEMF no refcount /∈ p4

tReturnValue′ = −1 0

˛̨̨̨
˛̨̨̨

Issues

• What does the call to wmb(), a macro defined in system.h, do?

• Not quite capturing !(memflags & MEMF no refcount)

24

6.3 alloc domheap pages
Allocate heap pages for a domain.

Parameter # Mode Type Interpretation
p0 O struct page info * tDomHeapPages
p1 IO struct domain * Guest domain.
p2 I unsigned int CPU
p3 I unsigned int Order
p4 I unsigned int Memory flags.

Undesired Events

Effects

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛

¬p1.mDying ∧ (∃p ∈ HardwareMemory)(∀p̂ ∈ HardwareMemory) (
(MEMF dma /∈ p4 ∨ (p̂.mAddress in [p.mAddress, p.mAddress + 2p3 − 1]

p1.mTotPages + 2p3 ≤ p1.mMaxPages) ∧p̂.cAllocated = false ∧ p̂.cZone = dom) ⇒
p̂.cAllocated′ = true)

¬p1.mDying ∧ (@p ∈ HardwareMemory)(∀p̂ ∈ HardwareMemory)
(MEMF dma /∈ p4 ∨ (p̂.mAddress in [p.mAddress, p.mAddress + 2p3 − 1]

p1.mTotPages + 2p3 ≤ p1.mMaxPages) ∧ p̂.cAllocated = false ∧ p̂.cZone = dom)
∧
p3 ≤ mMaxOrder
∧
tNumAvailDmaPages ≥ DmaEmergencyPoolPages + 2p3

∧
(∃p ∈ HardwareMemory)(∀p̂ ∈ HardwareMemory) (
(p̂.mAddress in [p.mAddress, p.mAddress + 2p3 − 1]
∧ p̂.cAllocated = false ∧ p̂.cZone = dma) ⇒
p̂.cAllocated′ = true)

¬p1.mDying ∧ (∃p ∈ HardwareMemory)(∀p̂ ∈ HardwareMemory) (
MEMF dma ∈ p4 ∧ (p̂.mAddress in [p.mAddress, p.mAddress + 2p3 − 1]

p1.mTotPages + 2p3 ≤ p1.mMaxPages ∧ p̂.cAllocated = false ∧ p̂.cZone = dma) ⇒
p̂.cAllocated′ = true)

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛

(∀i in [0, 2p3 − 1])(∃p ∈ HardwarePage) (
(tDomHeapPage′ 6= null ∧ p = page2Mfn(tDomHeapPages′[i]) ⇒26666664

p1.mDying true false

¬p1.mDying p1.mTotPages + 2p3 > p1.mMaxPages p1.mTotPages + 2p3 ≤ p1.mMaxPages
∧ MEMF no refcount /∈ p4 ∨ MEMF no refcount ∈ p4

p.cPageOwner′ = p.cPageOwner p1
p.cDomAllocated′ = p.cDomAllocated true

p.cRefCount′ = p.cRefCount 1

37777775
)

25

2664
p1.mDying true false

¬p1.mDying p1.mTotPages + 2p3 > p1.mMaxPages p1.mTotPages + 2p3 ≤ p1.mMaxPages
∨ MEMF no refcount ∈ p4 ∧ MEMF no refcount /∈ p4

p1.cTotPages′ = p1.cTotPages p1.cTotPages + 2p3

3775

Dictionary
tNumAvailDmaPages unsigned long
Does this have to be redundant with the definition in avail heap pages()?

tNumAvailDmaPages = |{(∀p ∈ HardwareMemory)(p.cAllocated = false∧(p.cZone = dma))}|

tDomHeapPages struct page info *

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛

(p1 = null ∨ (¬p1.mDying ∧ (∃p ∈ HardwareMemory) ((∀p̂ ∈ HardwareMemory)
MEMF no refcount ∈ p4 ∨ (p̂.mAddress in [p.mAddress, p.mAddress + 2p3 − 1]

p1.mTotPages + 2p3 ≤ p1.mMaxPages)) ∧ ∧p̂.cAllocated = false ∧ p̂.cZone = dom)
MEMF dma /∈ p4 ∧ ⇒

p3 ≤ mMaxOrder tDomHeapPages′ = mfn2Page(p.mAddress))
(@p ∈ HardwareMemory)(∀p̂ ∈ HardwareMemory)
(p̂.mAddress in [p.mAddress, p.mAddress + 2p3 − 1]
∧ p̂.cAllocated = false ∧ p̂.cZone = dom)
∧ tNumAvailDmaPages ≥ DmaEmergencyPoolPages + 2p3

∧ (∃p ∈ HardwareMemory) ((∀p̂ ∈ HardwareMemory)
(p̂.mAddress in [p.mAddress, p.mAddress + 2p3 − 1]
∧ p̂.cAllocated = false ∧ p̂.cZone = dma)
⇒

tDomHeapPages′ = mfn2Page(p.mAddress))
(p1 = null ∨ (¬p1.mDying ∧ (∃p ∈ HardwareMemory) ((∀p̂ ∈ HardwareMemory)

MEMF no refcount ∈ p4 ∨ (p̂.mAddress in [p.mAddress, p.mAddress + 2p3 − 1]
p1.mTotPages + 2p3 ≤ p1.mMaxPages)) ∧ ∧ p̂.cAllocated = false ∧ p̂.cZone = dma)

MEMF dma ∈ p4 ∧ ⇒
p3 ≤ mMaxOrder tDomHeapPages′ = mfn2Page(p.mAddress))

p1.mDying ∨ p3 > mMaxOrder ∨ tDomHeapPages′ = null
(MEMF no refcount /∈ p4 ∧

p1.mTotPages + 2p3 ≤ p1.mMaxPages) ∨
(tNumAvailDmaPages <

DmaEmergencyPoolPages + 2p3)

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛

26

Alternative representation of the value of tDomHeapPages.

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨

(p1 = null ∨ MEMF dma /∈ p4 (∃p ∈ HardwareMemory) ((∀p̂ ∈ HardwareMemory)
(¬p1.mDying ∧ (p̂.mAddress in [p.mAddress, p.mAddress + 2p3 − 1]

MEMF no refcount ∈ p4 ∨ ∧p̂.cAllocated = false ∧ p̂.cZone = dom)
p1.mTotPages + 2p3 ≤ ⇒

p1.mMaxPages)) ∧ tDomHeapPages′ = mfn2Page(p.mAddress))
p3 ≤ mMaxOrder (@p ∈ HardwareMemory)(∀p̂ ∈ HardwareMemory)

(p̂.mAddress in [p.mAddress, p.mAddress + 2p3 − 1]
∧ p̂.cAllocated = false ∧ p̂.cZone = dom)
∧ tNumAvailDmaPages ≥ DmaEmergencyPoolPages + 2p3

∧ (∃p ∈ HardwareMemory) ((∀p̂ ∈ HardwareMemory)
(p̂.mAddress in [p.mAddress, p.mAddress + 2p3 − 1]
∧ p̂.cAllocated = false ∧ p̂.cZone = dma)
⇒

tDomHeapPages′ = mfn2Page(p.mAddress))
MEMF dma ∈ p4 (∃p ∈ HardwareMemory) ((∀p̂ ∈ HardwareMemory)

(p̂.mAddress in [p.mAddress, p.mAddress + 2p3 − 1]
∧ p̂.cAllocated = false ∧ p̂.cZone = dma)
⇒
tDomHeapPages′ = mfn2Page(p.mAddress))

p1 6= null∧ true
p1.mDying ∨

p3 > mMaxOrder ∨
(MEMF no refcount /∈ p4 ∧

p1.mTotPages + 2p3 ≤
p1.mMaxPages) ∨

(tNumAvailDmaPages <
DmaEmergencyPoolPages + 2p3) tDomHeapPages′ = null

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨

Issues

27

6.4 alloc domheap pages
Allocate heap pages for a domain.

Parameter # Mode Type Interpretation
p0 O struct page info * tDomHeapPages
p1 IO struct domain * Guest domain.
p2 I unsigned int Order
p3 I unsigned int Memory flags.

Undesired Events

Effects˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛

¬p1.mDying ∧ (∃p ∈ HardwareMemory)(∀p̂ ∈ HardwareMemory) (
(MEMF dma /∈ p3 ∨ (p̂.mAddress in [p.mAddress, p.mAddress + 2p2 − 1]

p1.mTotPages + 2p2 ≤ p1.mMaxPages) ∧p̂.cAllocated = false ∧ p̂.cZone = dom) ⇒
p̂.cAllocated′ = true)

¬p1.mDying ∧ (@p ∈ HardwareMemory)(∀p̂ ∈ HardwareMemory)
(MEMF dma /∈ p3 ∨ (p̂.mAddress in [p.mAddress, p.mAddress + 2p2 − 1]

p1.mTotPages + 2p2 ≤ p1.mMaxPages) ∧ p̂.cAllocated = false ∧ p̂.cZone = dom)
∧
p2 ≤ mMaxOrder
∧
tNumAvailDmaPages ≥ DmaEmergencyPoolPages + 2p2

∧
(∃p ∈ HardwareMemory)(∀p̂ ∈ HardwareMemory) (
(p̂.mAddress in [p.mAddress, p.mAddress + 2p2 − 1]
∧ p̂.cAllocated = false ∧ p̂.cZone = dma) ⇒
p̂.cAllocated′ = true)

¬p1.mDying ∧ (∃p ∈ HardwareMemory)(∀p̂ ∈ HardwareMemory) (
MEMF dma ∈ p3 ∧ (p̂.mAddress in [p.mAddress, p.mAddress + 2p2 − 1]

p1.mTotPages + 2p2 ≤ p1.mMaxPages ∧ p̂.cAllocated = false ∧ p̂.cZone = dma) ⇒
p̂.cAllocated′ = true)

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛

(∀i in [0, 2p2 − 1])(∃p ∈ HardwarePage) (
(tDomHeapPage′ 6= null ∧ p = page2Mfn(tDomHeapPages′[i]) ⇒26666664

p1.mDying true false

¬p1.mDying p1.mTotPages + 2p2 > p1.mMaxPages p1.mTotPages + 2p2 ≤ p1.mMaxPages
∧ MEMF no refcount /∈ p3 ∨ MEMF no refcount ∈ p3

p.cPageOwner′ = p.cPageOwner p1
p.cDomAllocated′ = p.cDomAllocated true

p.cRefCount′ = p.cRefCount 1

37777775
)

2664
p1.mDying true false

¬p1.mDying p1.mTotPages + 2p2 > p1.mMaxPages p1.mTotPages + 2p2 ≤ p1.mMaxPages
∨ MEMF no refcount ∈ p3 ∧ MEMF no refcount /∈ p3

p1.cTotPages′ = p1.cTotPages p1.cTotPages + 2p2

3775

28

Dictionary
tNumAvailDmaPages unsigned long
Does this have to be redundant with the definition in avail heap pages()?

tNumAvailDmaPages = |{(∀p ∈ HardwareMemory)(p.cAllocated = false∧(p.cZone = dma))}|

tDomHeapPages struct page info *

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛

(p1 = null ∨ (¬p1.mDying ∧ (∃p ∈ HardwareMemory) ((∀p̂ ∈ HardwareMemory)
MEMF no refcount ∈ p3 ∨ (p̂.mAddress in [p.mAddress, p.mAddress + 2p2 − 1]

p1.mTotPages + 2p2 ≤ p1.mMaxPages)) ∧ ∧p̂.cAllocated = false ∧ p̂.cZone = dom)
MEMF dma /∈ p3 ∧ ⇒

p2 ≤ mMaxOrder tDomHeapPages′ = mfn2Page(p.mAddress))
(@p ∈ HardwareMemory)(∀p̂ ∈ HardwareMemory)
(p̂.mAddress in [p.mAddress, p.mAddress + 2p2 − 1]
∧ p̂.cAllocated = false ∧ p̂.cZone = dom)
∧ tNumAvailDmaPages ≥ DmaEmergencyPoolPages + 2p2

∧ (∃p ∈ HardwareMemory) ((∀p̂ ∈ HardwareMemory)
(p̂.mAddress in [p.mAddress, p.mAddress + 2p2 − 1]
∧ p̂.cAllocated = false ∧ p̂.cZone = dma)
⇒

tDomHeapPages′ = mfn2Page(p.mAddress))
(p1 = null ∨ (¬p1.mDying ∧ (∃p ∈ HardwareMemory) ((∀p̂ ∈ HardwareMemory)

MEMF no refcount ∈ p3 ∨ (p̂.mAddress in [p.mAddress, p.mAddress + 2p2 − 1]
p1.mTotPages + 2p2 ≤ p1.mMaxPages)) ∧ ∧ p̂.cAllocated = false ∧ p̂.cZone = dma)

MEMF dma ∈ p3 ∧ ⇒
p2 ≤ mMaxOrder tDomHeapPages′ = mfn2Page(p.mAddress))

p1.mDying ∨ p2 > mMaxOrder ∨ tDomHeapPages′ = null
(MEMF no refcount /∈ p3 ∧

p1.mTotPages + 2p2 ≤ p1.mMaxPages) ∨
(tNumAvailDmaPages <

DmaEmergencyPoolPages + 2p2)

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛

29

Alternative representation of the value of tDomHeapPages.

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨

(p1 = null ∨ MEMF dma /∈ p3 (∃p ∈ HardwareMemory) ((∀p̂ ∈ HardwareMemory)
(¬p1.mDying ∧ (p̂.mAddress in [p.mAddress, p.mAddress + 2p2 − 1]

MEMF no refcount ∈ p3 ∨ ∧p̂.cAllocated = false ∧ p̂.cZone = dom)
p1.mTotPages + 2p2 ≤ ⇒

p1.mMaxPages)) ∧ tDomHeapPages′ = mfn2Page(p.mAddress))
p2 ≤ mMaxOrder (@p ∈ HardwareMemory)(∀p̂ ∈ HardwareMemory)

(p̂.mAddress in [p.mAddress, p.mAddress + 2p2 − 1]
∧ p̂.cAllocated = false ∧ p̂.cZone = dom)
∧ tNumAvailDmaPages ≥ DmaEmergencyPoolPages + 2p2

∧ (∃p ∈ HardwareMemory) ((∀p̂ ∈ HardwareMemory)
(p̂.mAddress in [p.mAddress, p.mAddress + 2p2 − 1]
∧ p̂.cAllocated = false ∧ p̂.cZone = dma)
⇒

tDomHeapPages′ = mfn2Page(p.mAddress))
MEMF dma ∈ p3 (∃p ∈ HardwareMemory) ((∀p̂ ∈ HardwareMemory)

(p̂.mAddress in [p.mAddress, p.mAddress + 2p2 − 1]
∧ p̂.cAllocated = false ∧ p̂.cZone = dma)
⇒
tDomHeapPages′ = mfn2Page(p.mAddress))

p1 6= null∧ true
p1.mDying ∨

p2 > mMaxOrder ∨
(MEMF no refcount /∈ p3 ∧

p1.mTotPages + 2p2 ≤
p1.mMaxPages) ∨

(tNumAvailDmaPages <
DmaEmergencyPoolPages + 2p2) tDomHeapPages′ = null

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨

Issues

30

6.5 avail domheap pages

How many unused pages?

Parameter # Mode Type Interpretation
p0 O unsigned long tNumAvailDomHeapPages

Undesired Events

• uBadZone

• uNotInitialized

Effects
None.

Dictionary
tNumAvailDomHeapPages unsigned long

tNumAvailDomHeapPages′ = |{(∀p ∈ HardwareMemory)(p.cAllocated = false ∧ (p1.cZone = dom ∨ p1.cZone = dma))}|

Issues

• UEs neither detected nor reported.

• This specification does not address dma emergency pool pages.

31

6.6 free domheap pages

Put block of domain heap pages in free space.

Parameter # Mode Type Interpretation
p1 I struct page info * Page.
p2 I unsigned int Order of pages.

Undesired Events

• uRequestTooLarge

• uBadZone

Effects

¬((p1.cPageOwner).mDying) ⇒
(∀p ∈ HardwareMemory)(p.mAddress in [page2Mfn(p1), page2Mfn(p1) + 2p2 − 1] ⇒

p.cAllocated′ = false))

((p1.cPageOwner).mDying) ⇒
(∀p ∈ HardwareMemory)(p.mAddress in [page2Mfn(p1), page2Mfn(p1) + 2p2 − 1] ⇒

p.cScrubMe′ = true))

Issues

• free domheap pages() and page scrub softirq() share a data structure, scrub page list and
scrub pages, which keeps track of pages freed by dying domains which Xen needs to scrub.

• Function does not detect either UE.

• When can the zone a block belongs to change?

• I assume that the user of this function is not concerned with the merging of blocks of mem-
ory into larger blocks, nor with the algorithms and data structures involved in managing
and implementing such merging.
Of course, the implementor is.

32

7 Page Scrubbing
The Page Scrubbing module hides when pages are cleared.

7.1 page scrub softirq
Zeroize some pages.

Effects

(∀p ∈ HardwareMemory)((p.cScrubMe = true) ⇒
(p.cScrubMe′ = false ∧ p.cAllocated′ = false ∧ p.cZeroized′ = true))

Issues

• free domheap pages() and page scrub softirq() share a data structure, scrub page list and
scrub pages, which keeps track of pages freed by dying domains which Xen needs to scrub.

33

7.2 avail scrub pages
How many pages to zeroize?

Parameter # Mode Type Interpretation
p0 O unsigned long tNumPagesToScrub

Effects
None.

Dictionary
tNumPagesToScrub unsigned long

tNumPagesToScrub′ = |{(∀p ∈ HardwareMemory)(p.cScrubMe = true)}|

34

